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Transverse Centroid and Envelope Model: Outline
Overview
Derivation of Centroid and Envelope Equations of Motion
Centroid Equations of Motion
Envelope Equations of Motion
Matched Envelope Solutions
Envelope Perturbations
Envelope Modes in Continuous Focusing
Envelope Modes in Periodic Focusing
Transport Limit Scaling Based on Envelope Models
Centroid and Envelope Descriptions via 1* order Coupled Moment Equations

Comments:
+ Some of this material related to J.J. Barnard lectures:
- Transport limit discussions (Introduction)
- Transverse envelope modes (Continuous Focusing Envelope Modes and Halo)
- Longitudinal envelope evolution (Longitudinal Beam Physics III)
- 3D Envelope Modes in a Bunched Beam (Cont. Focusing Envelope Modes and Halo)
+ Specific topics will be covered in more detail here
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Transverse Centroid and Envelope Model: Detailed Outline

1) Overview

2) Derivation of Centroid and Envelope Equations of Motion
Statistical Averages
Particle Equations of Motion
Distribution Assumptions
Self-Field Calculation: Direct and Image
Coupled Centroid and Envelope Equations of Motion

3) Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties
Effect of Driving Errors
Effect of Image Charges

4) Envelope Equations of Motion

KV Envelope Equations
Applicability of Model
Properties of Terms

5) Matched Envelope Solution

Construction of Matched Solution
Symmetries of Matched Envelope: Interpretation via KV Envelope Equations
Examples
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Detailed Outline - 2

6) Envelope Perturbations
Perturbed Equations
Matrix Form: Stability and Mode Symmetries
Decoupled Modes
General Mode Limits

7) Envelope Modes in Continuous Focusing
Normal Modes: Breathing and Quadrupole Modes
Driven Modes

8) Envelope Modes in Periodic Focusing
Solenoidal Focusing
Quadrupole Focusing
Launching Conditions

9) Transport Limit Scaling Based on Envelope Models
Overview
Example for a Periodic Quadrupole FODO Lattice
Discussion and Application of Formulas in Design
Results of More Detailed Models
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Detailed Outline - 3

10) Centroid and Envelope Descriptions via 1* Order Coupled Moment

Equations
Formulation
Example Illustration -- Familiar KV Envelope Model

Contact Information
References
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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (0/9z = 0)
beam

Aperture
b
_ |
N—— Transverse averages:
} oy _[dPxy [dP2 - L
Centroid: - L= fdzau fdle fl

X ={(x), x- and y-coordinates
Y = (y). of beam center of mass

Envelope: (edge measure)

- x- and y-principal axis radii
re =2v/{(z — X)?)1 of an elliptical beam envelope
ry, =2y ((y —Y)?2) | * Apply to general f but base on uniform density f
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Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and are purposefully suppressed to

the level possible
* Error Sources:

- Beam distribution assymetries
- Dipole bending terms from applied field optics (due to field error or mech misalignment)

- Imperfect mechanical alignment
+ Exception: When the beam is kicked (insertion or extraction) into our out of a

transport channel as is often done in rings
Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter” synchronized to period of focusing lattice to

yield net focusing
+ Properly tuned flutter essential in Alternating Gradient quadrupole lattices

2) Mismatched Envelope: Excursions deviate from matched flutter motion and are

seeded/driven by errors

Limiting maximum beam-edge excursions is desired for economical transport
- Reduces cost by Limiting material volume needed to transport an intense beam
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes

(see: J.J. Barnard lectures on Envelopes and Halo)

Example: FODO Quadrupole Transport Channel

Envelope Solution: Matched and Mismatched Beam
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+ Larger machine aperture is needed to confine a mismatched beam
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

*Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
+ Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in
machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
1s not alone sufficient for effective machine operation

* Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- To be covered (see: S.M. Lund, lectures on Kinetic Stability)
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (9/0z = 0) beam

Transverse Statistical Averages:
Let N be the number of particles in a thin axial slice of the beam at axial

coordinate s. A /\\/

Beam
C
Axial Coordinate, z

\J//\

Thin Slice, N >> 1 Particles

Averages can be equivalently defined in terms of the discreet particles making up
the beam or the continuous model transverse Vlasov distribution function:

| N
particles: (++-)1 = N Z

1=1 |glice
- [Py [, - f1
distribution: < >L — fdza: 1 fdle fi

* Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Equations], take:

/" (’76/66)/ / _ q el
v (765b) = my, By c? Ox
/ O
n (768)" Lk — — q
Bs) ” T T R oy
02 0? 0
2 N _ —
Vie= (a:c2 ’ ay?) = e
P = Q/d2$l Ji Cb‘aperture =0

Assume:
+ Unbunched beam
+ No axial momentum spread
+ Linear applied focusing fields
described by Kz, Ky
+ Possible acceleration, Vb5
need not be constant

Various apertures are possible influence solution for ¢ . Some simple examples:

Round Pipe

7AW
N

Linac magnetic quadrupoles,
acceleration cells, ....
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Elliptical Pipe
y A

N

In rings with dispersion:

Hyperbolic Sections

'
N

Tp 2

>

Electric quadrupoles

in drifts, magnetic optics, ....
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous
K ()4 L ( K, =K,= kﬁo = const ) l

2
-
| s
'b) Periodic Solenoid
@ (g=1) )
el S S -
-
1 1 ' ! ' 8
| ! e i IR
Codf2 nL L dr2 o di2
| *" | d=(iL,
} | ©) Periodic Quadrupole Doublet
@[ (e=1%) i A
I — Kq —_———— —
dy NLyi2,
F Quad R -
; -
D Quad | s
ianQ !
! A
__i_ _________________________ J o — —Kq —- -
e Lp - d;= a(l—n)Lp
i Lattice Period 4 2= (1—[1)(1—1’] )Lp

Lattice Period L,

Occupancy 77
n € [0,1]

Solenoid description
carried out implicitly in
Larmor frame

[see: S.M. Lund lectures on
Transverse Particle Equations]

Syncopation Factor «

€10, 2]
a —_
9

1
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Distribution Assumptions

To lowest order, linearly focused intense beams are expected to be nearly uniform
in density within the core of the beam out to an edge where the density falls

rapidly to zero

Charge conservation requires:

(T \
A\ = const
) Uniform density in beam:
B A
| - T Ty
| >
X T
\ 2 /.2 2 /p2
P(my):QfdQ:UifL: TreTy (CB—X) /Tx+(y_y) /Ty<1
, 0, @ XP/ri =Yy

)\zq/dQ:UL/dlefL =/d2:1:p — const
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Comments:

+Nearly uniform density out to a sharp beam edge expected for near

equilibrium structure beam with strong space-charge due to Debye screening
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions

+Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high

+ Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution

- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution!
- Analogous to closures of fluid theories using assumed equations of state etc.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

)\0 (XJ_ — 5()
2meg |x1 — X|? x| =X = coordinate of charge

Ao = line charge

E, =

Resolve the field of the beam into direct (free space) and image terms:

3 3¢ and superimpose free-space

EJ_ = — EJ_ _|_ EJ_ . . . . .
9%, solutions for direct and 1image contributions
Direct Field
1 p(XL) (XL — X1 ) beam charge

Ed(x) = d* X) = . g

1 (x1) Iren / L x. — % |2 p(x) density
Image Field - 3 | beam image charge
R (x1) = 1 427, p'(x1)(xL — %1 ) p'(x) = density induced on

L 2meq €0 x; — % |? aperture
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Direct Field:

The direct field solution for a uniform density beam 1n free-space was

calculated for the KV equilibrium distribution
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions

Y A
Yo Uniform density in beam:
A
p = = const
: TrzTy
X &
J A x—X , : _y
B, = 7o (ra L 1)1 Expressions are valid only within
)\O B ly/ i the elliptical density beam -- where
£ — Yy~ they will be applied in taking averages
y
meo (ry + 1y)7y
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Image Field:

Image structure depends on the aperture. Assume a round pipe
(most common case) for simplicity.

Y A

A I.°
= Al = —Ag image charge
rFd Q:I
2
x; = —P—x%, image location
balk
>
T Will be derived in the

the problem sets.

superimpose all images of beam:

1

Ei (XL) - 27Ten

p(xL)(xL — 2%y /|xL]?)
X1 —r2xy /]xL]?)?

/ d*z;
pipe

+ Difficult to calculate even for p corresponding to a uniform density beam
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Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:

choose coordinates to
make true

p(x1) = Ao(x — Xx)

Plug this density in the image charge expression for a round-pipe aperture:
¢ Need only evaluate at X | = XX since beam is at that location

A
2meg(rs/X — X

A

)X

E! (x| = X%) =

+ Generates nonlinear field at position of direct charge
+ Field creates attractive force between direct and image charge
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2) Centered, uniform density elliptical beam:

Expand using complex coordinates starting from the general image expression:

o0 i (x —iy)"
B o A n—1 c = >z p(xy)~—2
E'=E! +iE! = E c.z Cn = S /pipe 1 p(x1) 72
n:2,4,--- ’I’L/2
z =T+ iy - iAn! ey
- 2men2™(n/2 + 1)!(n/2)! s

1=V —1

The linear (n = 2) components of this expansion give:
2 2 2 2
A rw—rym i A Ty Ty

4 8meg T

E, =
v 8meyg 715 J

+ Rapidly vanish (higher order terms more rapid) as beam becomes more round
+ Case will be analyzed further in the problem sets
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3) Uniform density elliptical beam with a small displacement along the x-axis:
Y =0

Expand using complex coordinates starting from the general image expression:
+ Use complex coordinates to simplify calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
+ Expressions become even more complicated with simultaneous
x- and y-displacements and more complicated aperture geometries

Leading
Order
Image
Fields

X |/r, <1

E’é

T

A

27r60r2

2
27T€0’I“p

A

fy+@<

flz—X)+gX]+ 6 (—

X

T'p

;
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Comments on 1images:
* Sign 1s generally such that it will tend to increase beam displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
+Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry formulas can give idea on scaling
- Generally suppress just by making the beam small relative to characteristic
aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
*Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture changes and/or beam
symmetries evolve

Round Pipe Elliptical Pipe Hyperbolic Sections
Y A Y A \&A _//

/ N / \ Tpy Tp 7
> — > >
\J ’ k/ X \ AT
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Coupled centroid and envelope equations of motion

Consistent with the assumed structure of the distribution
(uniform density elliptical beam), denote:

Beam Centroid:

X=(z), X =) i
V= (y)L Y'=(y')1 v 4 A
Coordinates with respect to centroid: B :y Rk _
rT=x— X 7 =2 - X'’ E?"x T
j=y-Y =y Y
Envelope Edge Radii: g
= 2@, 1 = (i) s * ’
ry = 24/(9%) 1L ry = (97') 1 /ry

With the assumed uniform elliptical beam, all moments can be calculated
interms of: X, Y Tz, Ty
+ Such truncations follow whenever the form of the distribution is “frozen”
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Derive centroid equations: First use the self-field resolution for a uniform density
beam, then the equations of motion for a particle within the beam are:

-
2
2+ ('Ybﬁb) t 4 Kok — Q (33 B X) — 3q . 2E;3
(V60b) (ra +1y)72 my By e
7 (’Vbﬁb)/ / 2Q) q i
+ + Ky — -Y)= E
(ﬁ)/b/Bb) Y vd (Ta: + Ty)ry ( ) m’YgﬁgCQ Y
77777777777777 Direct Terms Image Terms
Perveance:
gA . .
= Sy o Y (not necessarily constant if beam accelerates)
01Ty Mo

average equations using:  (x’); = (x)’, = X' etc,, to obtain:

Centroid Equations:

X/I _I_

Y// _I_

Vo)’ 2m€0 1

(( 5 )) X'+ kX =0Q Y (EL )L Note: the electric image
TbPb / - - field will cancel the
((Vb@ﬂb)) v+ b)Y = O 27;60 (E;>L coefficient 2men /A
b i 1

* (E')| will generally dependon: X, Y and 7, 7
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To derive equations of motion for the envelope radii, first subtract the centroid
equations from the particle equations of motion ( £ = z — X ) to obtain:

~ 1/ (’Ybﬁb) 7 B Qij B q - i

o (%55) Rl (15 + 7474 _ mﬁyb 5{) 2 [Eq; <Ex>J_]

T ('Yb/@b) - 20y B Z
(/Yb/@b) y " ro (Tac + Ty)rac B ’m”Ybﬁch [E <E > }

Differentiate the equation for the envelope radius (y-equations analogous):

, 2@z’ HxTl)o

re =27 e

1 r (:c2> 1 - T
Define (motivated the KV equilibrium results) a statistical rms edge emittance:
_ _ ~2\ a2 ~~n271/2
Ex = deprms = 4 [(2%)1(27) — (T2 )L]

Differentiate the equation for 7“; again and use the emittance definition:

i 4(533'5‘”& N 16[(Z%) L (Z%) L — (&3")7 ]
T T rs
NI
T rs

and then employ the equations of motion to eliminate Z” in (ZZ") | to obtain:
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Envelope Equations:

(1)’ 20 _ & €0
2Ty — ——— — —3 =8 [_ E }
T+ (%ﬂb)r + KT ety 1 Q 3 (TE,)L
(’Ybﬁb)' 26 2 0 o
¥ _ 8 [— E; ]
(%Bb) o+ Ry — — TS Q )\ (Y y>J_
* (zE") will generally dependon: X, Y and 74, 7y

Comments on Centroid/Envelope equations:
+Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected
+*Image terms contain nonlinear terms that can be difficult to evaluate explicitly
- Aperture geometry changes image correction
+The formulation is not self-consistent because a frozen form (uniform density)
charge profile 1s assumed

- Uniform density choice motivated by KV results and Debye screening
see: S.M. Lund, lectures on Transverse Equilibrium Distributions
- The assumed distribution form not evolving represents a fluid model closure
- Generally find with simulations that uniform density frozen form distribution
models can provide reasonably accurate approximate models for
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Comments on Centroid/Envelope equations (Continued):
*Constant (normalized when accelerating) emittances are generally assumed

- See: S.M. Lund, lectures on Transverse Particle Equations

Bv, v, A s-variation set by acceleration schedule

const

Enz = VbPbEx
Eny = Vopey = const

— used to calculate ¢, €

_ qA
- 2mmeoy BEc?
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S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

/
X 4+ (Vbﬂb) X/ 4+ lﬁJxX —0
(7658)
/
Y//_I_ (719/65) Y’—|—l<: YV —0
(765) Y

+ Usual Hill's equation with generalized acceleration term

+Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Equations: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances and/or
that acceleration i1s weak and can be neglected. Then single particle stability
results give immediately:

Oor < 180°

centroid stability, 1% stability condition
0oy < 180°
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/Il Example: FODO channel centroid evolution

o lattice/beam
Mid-drift é parameters:
launch: Z 3, = const
X(0)=1mm - G0 = 80°
X'(0) =1 mrad . L,=0.5m
n =0.9

0 2 4 6 8 10 12 14 16

s/L,, Lattice Periods

+ Centroid exhibits expected characteristic stable betatron oscillations

/]
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Effect of Driving Errors

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance:

G, G,
X 4 (/Vb/gb) AJOFb) 5 4 - X = - g A:z:n
(o) G Kq($) Go Kq($)
% = nth quadrupole gradient error (unity for no error; s-varying)
0

A, = nth quadrupole transverse displacement error (s-varying)

//l Example: FODO channel centroid with quadrupole displacement errors

15
Gn _ 1 10 F
Go g
= 5t . .
Agn = [—0.5,0.5] mm . solid — with errors
(uniform dist) = sy NS N g A L L b dashed —  no errors
-.51 4 . 1o " ¢ W ' N W ’ .
3 st
—
. 5
same lattice O _ip
as previous
Lo 10 20 20 40 50
s/ L, Lattice Periods ///
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Errors will result in a characteristic random walk increase in oscillation amplitude
due to the (generally random) driving terms.

Control by:
+ Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y"
+ Fabricate and align focusing elements with higher precision
+ Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

X" 4 (7686) X' 4k, X = QQX . examine oscillation
(765b) ry — X along x-axis
X 9y + Q x
r,a2 _ X2 T 7"2 ,,a4
b b p
linear correction / \ Nonlinear correction (smaller)

Example: FODO channel centroid with image charge corrections

. :,:

D

rp, = 30 mm

Q=2x10"4

—

solid — with images
dashed — no images

=

|
b

same lattice
as previous

Centroid X [mm)|

|
]

0 10 20 30 40 50
s/ L,, Lattice Periods
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Main effect of images 1s generally an accumulated phase error of the centroid orbit
since, generally the centroid error oscillations are not “matched” orbits and errors
are not regularly “undone”

* This will complicate extrapolations of errors over many lattice periods

Control by:
+ Keeping centroid displacements X, Y small by correcting
+ Make aperture (pipe radius) larger

General Comments:
+*Images contributions to centroid excursions generally less problematic than
misalignment errors in focusing elements
*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y is often weak
+ Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice

- Non-ideal orbits are poorly tuned to lattice and become more sensitive to
the precise phase of impulses

+ Over long path lengths many nonlinear terms can influence results
+ Lattice errors are not often known so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
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S4: Envelope Equations of Motion

Overview: Reduce equations of motion for 7, 7y
* Generally found that couplings to centroid coordinates X Y are weak
- Centroid ideally zero in a well tuned system
*Envelope eqns are most important in designing transverse focusing systems
- Expresses average radial force balance (see following discussion)
- Can be difficult to analyze analytically for scaling properties

- “Systems” codes generally written using envelope equations, stability
criteria, and practical engineering constraints

+Instabilities of the envelope equations in periodic focusing lattices must be
avoided in machine operation
- Instabilities are strong and real: not washed out with realistic distributions

without frozen form
- Represent lowest order “KV” modes of a full kinetic theory

*Previous derivation of envelope equations relied on Courant-Snyder
invariants in linear applied and self-fields. Analysis shows that the same

force balances result for a uniform elliptical beam with no image couplings.
- Debye screening arguments suggest assumed uniform density model taken
should be a good approximation for intense space-charge
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KV/rms Envelope Equations: Properties of Terms

The envelope equation reflects low-order force balances:

1" (’Vb/Bb)/ / 2Q 5920 .
x T o T KgTg - 3 = 0
(wB) * e + Ty r3
2
1" 3(7661))/ /- 2Q) Sy
y T Ty T KyTy 3 0
W) T ety T
Applied Applied Space-Charg Thermal
Acceleration  Focusing Defocusing Defocusing
Terms: Lattice Lattice Perveance Emittance

The ““acceleration schedule” specifies both ~,3, and A\
then the equations are integrated with:

Vo€ = const

normalized emittance conservation
YoPpEy = const

Q= 30 specified perveance
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Reminder: It was shown for a coasting beam that the envelope equations

remain valid for elliptic charge densities suggesting more general validity
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

72 y2 Based on:
P:p(r—2+r—2) <x8—¢> :_)\ T
T Y oz '+ dmeg ry + 1y
the KV envelope equatjons see J.J. Barnard, Intro. Lectures
200 £2(s)
' (s) + Ky (S)ryp(s) — LA
PO R E T )
2Q e2(s)
144
— =0
,ry (8> —I_ K/y(S)’ry (8> o (3) _I_ ry( ) 7"3( )

remain valid when (averages taken with the full distribution):

Q = a) — const A= qfdQ.rL p = const
2megmy; B ¢

re = 2(a%) | er = 4[(e°) L (@)L — (a2)3]V/?

ry = 2(y%) ey =4[ L WP L — (yy)1 )3

* Evolution changes often small in ¢, ¢,
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Properties of Envelope Equation Terms:

Applied Focusing: KzTz, Ky,7y and Acceleration: (16)" ,  (75b)’

(wB) 7 (60)

ry
+ Analogous to single particle orbit terms

+ Contributions to beam envelope essentially the same as 1n single particle case

+Have strong s dependence, can be both focusing and defocusing
- Act only in focusing elements and acceleration gaps

2Q)
Ty + Ty
+ Acts continuously in s, always defocusing
+*Becomes stronger (relatively to other terms) when the beam expands in cross-
sectional area

Perveance:

o2
Emittance: —‘;“"

TQ?
+ Acts continuously in s, always defocusing
+Becomes stronger (relatively to other terms) when the beam becomes small in
cross-sectional area
*Scaling makes clear why it 1s necessary to inhibit emittance growth for
applications where small spots are desired on target
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As the beam expands, the perveance term will eventually dominate:

[see: S.M. Lund and B. Bukh, PRSTAB 7, 024801 (2004)]
Free expansion (x, = k, = 0)
Initial conditions:

rz(8i) = ry(si)

Cases:

Space-Charge Dominated: £, = 0

: 3 . .
rl(si) =1l (8;) = 7 (i) 27“3;(3@) Emittance ~ Dominated: ) =0
E
Q=—-~~=10""
Tw(si)
3.0
) 5 r, (S)/’”x (Si) See PRSTAB arti.cle:'
= O solution 1s analytical in
[ Space- Charge . .
e _ Dorm bounding limits shown
7 _ ominated
= 2.0 ._
Q. : / | Parameters are chosen such
LE 151 ri($)/1(s)) | thatinitial defocusing
T . | forces in two limits are
[ Emittance | :
_ : | equa
10 o | o D?mlnated ]
00 01 02 03 04 0.5

Axial Coordinate, s—s;, (m)
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S5: Matched Envelope Solution:

Neglect acceleration (4,3, = const) or use transformed variables:

ry(s) + ra(s)ra(s) —

Ty (8) + fiy(s)ry(s) —

rz(s+ Ly) = rz(s)
ry(s+ Lp) = ry(s)

2Q g2
() Fry5)  13(s)
2Q &
() try3)  13(s)
r.(s) >0
ry(s) >0

Matching involves finding specific
have the periodicity of the lattice:

initial conditions for the envelope to

Such That;

Find Values of:
T2 Si / 7

(s4) r:/,;(s ) g
ry(si) 1y (si)

(8 + Lp) = 74(54) T:/n
r

ry(si 4 Lp) = 1y(51)

+ Typically constructed with numerical root finding from estimated/guessed values

- Can be surprisingly difficult for complicated lattices and/or strong space-charge

+ [terative technique developed to numerically calculate without root finding
[S.M. Lund, S. Chilton and E.P. Lee, PRSTAB 9, 064201 (2006)]
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Typical Matched vs Mismatched solution for FODO channel:
Matched Mismatched

Matched Beam Envelope Envelope Solution: Matched and Mismatched Beam

40 T T T T | T T T T | T T T T 40 T I T ./t\| | I T I I | T I I I
i ] i / “'{4— MisMatched Beam (Dashed) i

: 1 .-
i s A M
H . R N FERY

X,Y Envelopes (mm)
X,Y Envelopes (mm)

4 H ! 1 ,-I i i A
-\ ! .! 1 ] / K N 3 .
:y ; ; l'\ ,." i j .'\ -"
I‘. : -’ | h R 3 ‘ I :\ -
.\ :I ‘-\‘ /- -.\ ’_l / “ :
\" /"
- - Matched Beam (Solid) .

10 - 10 i

|
0 5 10 15 0 5 10 15
Axial Coordinate, s (m) Axial Coordinate, s (m)

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
+ Matching tends to exploit optics most efficiently to maintain confinement
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Edge Radu r; and r, (mm)

rz(s+ Lpy) =1z(s)
ry(s+ Lp) = ry(s)

Eg = Ey

Solenoidal Focusing

(Q = 6.6986 x 10™%)

Axial Coordinate /L,

Parameters
L,=05m, o9o=280° n=0.5
., — 50 mm-mrad
o/og = 0.2

FODO Quadrupole Focusing
(Q = 6.5614 x 10™%)

10« e

K] [ .4 0.5 0.8 1

Axial Coordinate s/L,
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Symmetries of a matched beam are interpreted in terms of a local rms

equivalent KV beam and moments/projections of the KV distribution
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions]

Midicned Dedill LOYCLOpS dnd rMocusing runcLion

E ]
- 5
a2 n ]
B 6F " ;
Sy | : ]
E 4F . . . . . . . . . . |I . | | | | s
Hooo 0.2 i 0.4 i 0.6 i 0.8 ]
PrOJ ection i ! Axial Coordinate'(Lattice Periods) ! |
! l l l l
y
X_
Y X
area: Tr,T, 7 const
| |
X
Ex
!
X-X
area: e, = const

(CS Invariant)

'

Y-y

area: e, = const
(CS Invariant)
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S6: Envelope Perturbations:

An extensive review article 1s available that both reviews/extends many aspects of
envelope modes in periodic lattices covered in S6-S8: see S.M. Lund and B. Bukh,

PRSTAB 024801 (2004) [henceforth denoted: PRSTAB Review]

In the envelope equations take:

re(8) = Tem(s) + 0rz(s)

Matched  Mismatch
Envelope Perturbations

Ta:m(s + Lp) — Twm(S)

Ta:m(s) > ‘5rwm(5)|
Tym(8) > [07ym (5)]

Driving Perturbations:

Ke(S) — Ko(s) + 0Kz (s)

fy(8) = iy (s) + Bry(s) oS
Q — Q+0Q(s) Perveance
Co = Ex + 082(8) Emittance

ey — €y + 0gy(s)

Tem(8) > 0
Fym (s 4+ Lp) = rym(s)  Tym(s) >0

Amplitudes defined in terms of
producing small envelope perturbations

+ Driving perturbations and distribution errors generate/pump envelope perturbations

- Arise from many sources: focusing errors, lost particles, emittance growth,

ooooo
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The matched solution satisfies:
+ Add subscript m to denote matched to distinguish from other solutions

Fe = Tam For matched beam envelope

Ty — Tym with periodicity of lattice
20) g2
o (8) + K (8)rem(s) — - 5 =0
(&) KT ) T () 2
20 £
rt(8) + Ky (8)rym(s) — — =2 =0
y AT Tem(8) + Tym(s)  13,,(5)
Tem (S + Lp) = Tem(S) Tem(8) >0
rym (8 + Lp) = rym(s) rym(s) >0
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Linearized Perturbed Envelope Equations:
» Neglect all terms of order §2 and higher: (57“:,;)2, 0Tz 07y, 0Q0Ts, -

92 32
Or! + K0Tz + T +Qr E (0ry + dry) + 7“43: or
xm ym
2 252
Tem Tym T'em
20 3e2
or!’ ) or, + o0 — 95
Ty T KyOTy + (o +7“ym)2( e + 0ry) + nglm Ty
9 28?3
= —TymOKy + rom o 0 + 5 3 0gy

Homogeneous Equations:
+ Linearized envelope equations with driving terms set to zero

2Q 3¢5

Or! + Kz0rs + o—— 07y + ory) + T —20r, =0
2Q 3¢’

0T, 4 Ky 0Ty + O (0ry + dry) + r4y ory =0
rm ym ym
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Martix Form of the Linearized Perturbed Envelope Equations:

i5R+K )R = 0P

ds
0Ty
sR=| Coordinate vector
0Ty
0Ty Coefficient matrix Has periodicity
O -1 0 0 Ko = 2Q of the lattice period
m 2
K= kxm 0 kOm 0 (Txm + Tym)
- 0 0 0o -1 2
kOm 0 kym 0 kjm = Ry + 3 4.7 + kom J=Z, Y
im
0
Ex0Ey
oP = —Ofa F 2r$m+rym +2 Tom . .
= o Driving perturbation vector
—0ky + 2 m+rym + 2%589

Expand solution into homogeneous and particular parts:

'R = dRy, + R, 0Rp = homogeneous solution

0R, = particular solution

d d
—oR, +K-0R;, =0 —oR, + K- 0R, = 0P
ds ds
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Homogeneous Solution: Normal Modes

+ Describes normal mode oscillations

+ Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

+ Describes action of driving terms

+ Characterize in terms of projections on homogeneous response (on normal modes)

Homogeneous solution expressible as a map:

SR(s) = M.(s|s;) - 6R(s;) Now 4x4 system, .bl'l'[ analogous.to the
SR(s) = (81, 81", 1y, 61 ) 2x2 analysis of Hill's equation via
B T Y transfer matrices: see S.M. Lund
Me(8|8i) = 4 x 4 transfer map lectures on Transverse Particle Equations

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(Si —+ Lp|82) . En(Sz) = )\nEn(Sz)

Stability Mode Expansion/Launching
4
N o, — mode phase advance (real) SR(s;) = Z anEn(si)
" " Yn — mode growth /damp factor (real) n=1
o, = const (complex)
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Eigenvalue/Eigenvector Symmetry Classes:

a) Stable
ImA,, |

¢) Unstable, Lattice
Resonance

Im A, A

Eigenvalues

—icl
7L3=1/7Ll=7\,1*=€-
7\.4= 1/7\.2=12* =e

Eigenvalues

ic

1
ll=e

i
Ay = 1pe .
l _l*_ —10'1
3= M =€

in
14 = l/l2 = {1/72)8

Eigenvectors
>
Ep
>
3<y)
> 2 ik
E3 = El
E4_ = EQ*

Eigenvectors
Ey
%2 (real)
By = By

E’4 (real)

b) Unstable, Confluent
Resonance

Im A, \

Eigenvalues
icl
Ay =71, e
o
12 = l/?Ll* = (l/yl)e.
-0,
13 = l/?Ll = (l/’?'l)e

—lGl

d) Unstable, Double Lattice

Resonance

Im A, |

A 12@‘

Eigenvalues

~
N

Symmetry classes of eigenvalues/eigenvectors:
+ Determine normal mode symmetries
+ See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)

+ Envelope mode symmetries discussed fully in PRSTAB review
+ Caution: Textbook by Reiser makes errors in mode symmetries and
mislabels/identifies dispersion characteristics

Red, My =174 = (1/y)e”

in
7t4 = 1/7\.2 = (1/72)3

Eigenvectors

B
By =B
E4 = El*

Eigenvectors
E 1 (real)
EZ (real)
E}; (real)

]_)5'4 (real)
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Pure mode launching conditions:
Launching conditions for distinct normal modes corresponding to the

eigenvalue classes illustrated:

Ay = mode amplitude (real)

¢ = mode index

¢ = mode launch phase (real) C.C. = complex conjugate

Case Mode Launching Condition | Lattice Period Advance
(a) Stable 1 - Stable Osc. 5R1 = Alelel + C.C. M65R1 (¢1) = 5R1 (@bl + 0'1)

2 - Stable Osc. ORy = Aye2Ey + C.C. | M.6Ry (1)) = R (¢y + 09)
(b) Unstable |1- Exp. Growth |dR; = A1eE; + C.C. M.0R(1) = v16R1(¢1 + 01)
Confluent Res. | 2 - Exp. Damping | 6Ry = Aze™2Ey + C.C. | M.6R2(1)2) = (1/71)0Ra(1hy + 01)
(c) Unstable |1 - Stable Osc. R = A1eE; + C.C. | M.0R (1) = 6R1(¢1 + 01)
Lattice Res. 2 - Exp. Growth |dRs = AsEs MRy = —v90R,

3 - Exp. Damping | {R3 = AsE, M.R3 = —(1/72)0R3
(d) Unstable |1 - Exp. Growth |dR; = A1E; M.6R1 = — 7R,
Double Lattice | 2 - Exp. Growth |0Ry = AsEs M. 0Ry; = —0R,
Resonance 3 - Exp. Damping | 6R3 = A3E; MOR3 = —(1/71)0R3

4 - Exp. Damping | 0R, = A4E4 MRy = —(1/72)0Ry4

R, = 0Ry(s;) Ep=E4(s;) M., = Mc(s; + Lp|s:)

AL[E1(5)e™1() 4 Ex(s)e= 1] 4+ Ay[Ey(s)ei®2() + Ei(s)e~1¥2()],
A [E1(8)ei1(®) 4 E*(s)e~ 1] + AyEq(s) + AsEa(s),

R(s) =

AlEl(S) + AQEQ(S) + AgEg(S) + A4E4(S),
SM Lund, NE 290H, Spring 2009 Transverse Centroid and Envelope Descriptions of Beam Evolution 43

cases (a) and (b)
case (c)
case (d)




Decoupled Modes

In a continuous or periodic solenoidal focusing channel
al(8) = hy(5) = A(s)
with a round matched-beam solution
Ex = €y = € = const

ram(5) = Tym(s) = rm(s)
envelope perturbations are simply decoupled with:

ory + or

Breathing Mode: ory = — ;— Y

Quadrupole Mode: or_ = 0T ; ory
The resulting decoupled envelope equations are:

Breathing Mode:

20) 3e? ke + 0K 1 22 ([ dey, + Oc

R Rt G ) RO Ll o )

Quadrupole Mode:

" 3e? Oz — Oky 2e? [ de, — Oy
or’ + Kor_ + —or_ = —r,, +
"' 2 T3, 2
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Graphical interpretation of mode symmetries:

Breathing Mode:

0Ty + 07y
2

5’1“_|_=

Quadrupole Mode:

0Ty — 0Ty
2

or_ =

SM Lund, NE 290H, Spring 2009

y T Breathing Mode (+)
Quadrupole Mode (-) Envelope
Envelope _——==—_, / 8 _______ S Breathing
NN _r_.]_/___fiirx Mode (+)
_ Quadrupole
Sry B _er Mode (-)
P N -
-
X
Matched Beam e
Envelope Ty OFy
Quadrupole and

Breathing Modes
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for dr,(s)
+ Indirectly present in both equations from matched envelope r,(s)

Homogeneous Solution:
+ Restoring term for Or, (s) larger than for 07 (s)

- Breathing mode should oscillate faster than the quadrupole mode

Particular Solution:
* Misbalances 1n focusing and emittance driving terms
can project onto either mode
- nonzero perturbed K (s) + K,(s) and € (s) + €(s)
project onto breathing mode
- nonzero perturbed K (s) — K (s) and € (s) — € (s)
project onto quadrupole mode
* Perveance driving perturbations project only on breathing mode
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Previous symmetry classes greatly reduce for decoupled modes:

Previous homogeneous 4x4 solution map:
OR(s) = M.(s|s;) - 0R(s;)
0R(s) = (0ry, o1y, 01y, 0T
M. (s|s;) = 4 x 4 transfer map
reduces to two independent 2x2 maps with greatly simplified symmetries:

OR = (dry, or ,0r_,0r")

M (si + Lyp|si) 0

Me(si + Lyplsi) = 0 M_(s; + Lp|si)

with corresponding eigenvalue problems:

Mi(Si —+ Lp‘SZ) . En(SZ) — )\j:En(Sz)

Many familiar results from analysis of Hills equation (see: S.M. Lund lectures on
Transverse Particle Equations) can be immediately applied to the decoupled case,
for example:

1 o
§\Tr My (s; + Lypls;)| < 1 ——» mode stability
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Eigenvalue symmetries and launching conditions simplify for decoupled modes
Eigenvalue Symmetry 1:

Stable
Im 7\% A

Gy
Launching
Condition / Projections

v A Breathing Mode (+)
) Quadrupole Mode (-) /Envelope
AY Envelope @~ —p1——~_/ 1 - :
)L* 4 + P _ Breathing
* A‘i * = I/A’i =€ N e Sry_érx Mode (+)
Sr =8 Quadrupole
. Y~ Y XMode (-)
Eigenvalue Symmetry 2: T'm [ A T -
Unstable, Lattice Resonance -
ImA, A
—IT
T o
Matched Beam I —
7\,.1_ Ux.!. Envelope i iﬁrxi
* ¢ < Quadrupole and
1 Re 7\-.;__ Breathing Modes
—ITT
Mo, =y e
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General Mode Limits

Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limat:

lim oy = 20
Q—0 ¢ 0

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with k, = k,, €, = ¢

5 2
[ Tt (8)] + [w(8)r+ (5) — wi (5)dr" (s)]* = const
w+(8)
where 2
20) 3e 1
wl—l—anr—l—%er—kEer—E:O
3e? 1
w’_’—|—/£w_—|—%w_——320
rd w°

W (s + Lp) = w(s)
Analogous results for coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]
+ More complex expression due to coupling
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S7: Envelope Modes in Continuous Focusing

2
Focusing: Kz (S) = ky(s) = k?so — (ﬂ> = const

LP
Matched beam: Eg = Ey = € = const
symmetric beam: "o (S) = I'ym (3) = r,, = const
2
matched envelope: k2 Q & _ 0
BoTm — T g
'm T
depressed phase advance: 9 Q €Lp
0 =14/% — )2~ 2
(Tm/ p) T'm
one parameter needed for scaled solution: k% 0 c2 08 22 ( o / 0-0)2

Decoupled Modes: — —
P Q2 QL2 [L—(0/00)??

5 (5) = 0T, (s) :;: ory(s)
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Envelope equations of motion become:

0K,

d2 57"_|_ 2 57“+ O'g
P ds? <rm>+0+ (H) T2

2
k3o

0K,

)
+ 20 4 (o2
kBO

(2=)--%(

) de, O
o ’;y 12 < €z 5y>
kﬁo kﬁo g €

o E\/ 208 + 202 “breathing”  mode phase advance

o E\/ o2 + 302 “quadrupole” mode phase advance

Homogeneous equations for normal modes:

d? ?
@57’:& + (%) 5’)”:|: =0
p

+ Simple harmonic oscillator equation

Homogeneous Solution (normal modes):

0r+(s) = 0r+(s;) cos (ai
Ly

S — 54

) +

Ui/Lp

Or'y (s;

) sin > %
o
+ Lp

or+(s;), Or' (s;) mode initial conditions
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Properties of continuous focusing homogeneous solution: Normal Modes

Mode Projections

Breathing Mode (+)
Envelope

< Breathing
SI’X Mode (+)
_ Quadrupole
Ory==0" e\ fode ()

v

Mode Phase Advances
> v
% 20 Quadrupole Mode (—)
% Envelope
ﬁ i8¢t 7 ]
Z Breathing Mode
£ 1.6 G, /Gy T
QL
214
= G_/GO
3 1.2 Quadrupole Mode |
Nt pole Mode
71
5 80 02 04 06 08 1.0 belope
G /Gy
Breathing Mode:
Quadrupole Mode:

(57"_|_

or_

|
-

>
X

Oy

Quadrupole and

Breathing Modes

0Ty + 07y

2
0Ty — 0Ty

2
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Particular Solution (driving perturbations):

Green's function form of solution derived using projections onto normal modes
see PRSTAB Review

57“;58) 22/ ds G4 (s,5)0p+(35)
03 _553;(8) 5/<;y(s)_ Sex(s)  dey(s)
=) == | T _+a[ (o) _ %oy ]

1 $—S§
G 5) = '
+(s,3) o2 /L, sin (ai I, )

Green's function solution 1s fully general. Insight gained from simplified solutions for
specific classes of driving perturbations:

+ Adiabatic

» Sudden covered here

+ Ramped

+ Harmonic covered in PRSTAB Review article
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Continuous Focusing — adiabatic particular solution

For driving perturbations 0p,(s) and dp (s) slow on quadrupole
mode (slower mode) wavelength ~ 2TtL /G_ the solution is:

ory (s opa (s
7:#( ) — p;( ) / Focusing / Perveance
m +
ot Q1 (), m©) |, [L1= (0/0n)?] 60
214 (0/0g)?]| 2 k2, k30 21+ (0/00)2| Q
n [ (0/09)? 1 [ de4(s) N 0gy(s) |
1+ (0/00)2 2 £ e
h Emittance
or_(s) Sp_(s) Coefficients of adiabatic
7“_m - p(;% / Focusing terms in square brackets™[ ]”
_ 1 |1 [ 0ral(s)  dky(s)
|1+ 3(c/00)?] 2 k%o k‘%o
| 2(0/00)? |1 (dex(s) dey(s)
+ . EICAR
_]-‘|‘3(O'/O'0)2_ 2 IS c
Y Emittance
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Continuous Focusing — adiabatic solution coefficients

a) &, = (8r,+ &r,)/2 Breathing Mode Projection

Adiabatic Solution Coefficients

C /oy
b) &r. = (dr,- 8r,)/2  Quadrupole Mode Projection
1.0
Emittance Terms:
08 (cx‘d”)l
|+(m'cr”)3 \\
0.6 O
.
0 ] 4 Flocusinlg Tertns: ////
02 2) +(6/6)°

Adiabatic Solution Coefficients

0.5
Ferveance
0 4 | Term:

o 32
LI - (GIGU}I

B ~
0.3 2l+(0/6) <

ra
0.2 Focusing Terms: E mittance

1 1 Terms:
,

~ . .
0 1 2 +[-:31'-:3U}2 ‘\\\ [GJGU)

2

1+ [Gx’d()}

0.
%.0 02 04 06 038

1.0

0.
%.0 02 04 06 038
o /oy

1.0

Relative strength of:

+ Space-Charge (Perveance)
+ Applied Focusing
+ Emittance

terms vary with space-charge
depression (0/0,) for both
breathing and quadrupole
mode projections

Plots allow one to read off the
relative importance of various
contributions to beam
mismatch as a function of
space-charge strength
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Continuous Focusing — sudden particular solution

For step function driving perturbations of form:

Op+(s) = 0p+O(s — sp)
with amplitudes:

2
— o5 | 0k 0K
0pr = —— -+ 5
2 _kgo kgo_
s _ o [oka Oy
2 kgo kgo

The solution is given by the substitution i

_axial coordinate Hat quantities

S =8, = . .
P perturbation applied are constant
amplitudes
50 Ses e,
+ (05 — 02)—Q + 0% | ==+ Y| = const
Q) 3 3
Ses e,
+ o2 = — Y| =const
g g

n the expression for the adiabatic solution:

'

op+(s) — 5/};; [1 — COS (ai

S— S
LP

)| e - s

.\E

~

R
%) A N

o

2

§ A

S

M | Adiabatic

o | S R L T R
=Y

°

O

= A

M

.
_‘ -

Axial Coordinate, s

2x Excursion .
For the same amplitude of

total driving perturbations,
sudden perturbations result
in 2x the envelope
excursion that adiabatic
perturbations produce.

Adiabatic
Excursion
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S8: Envelope Modes in Periodic Focusing Channels

Overview

* Much more complicated the continuous limit results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
+ Instability bands calculated will exclude wide ranges of parameter space from
machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
+Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of mode characteristics
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
* More information on results presented can be found in the PRSTAB Review
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Solenoidal Focusing — Matched Envelope Solution

2) 0p = 80°andn = 075 High Occupancy  Focusing:

E g; o/o) =0.5 o Kz (s) = ky(s) = k(s)
30 : (s + Ly) = K(9
:g 04 | K I_ Matched Beam:

Ex = Ey = € = const

00 02 04 06 08 10

Axial Coordinate, s/L,, T'em (S) = Tym (S) — T'm (S)

b) 6y=80°andn = 0.25 Low Occupancy
_ — - rm (s + Lp) = Tm(s)
3 0.7} © (Mid Lens and Mid Drift)
lg oloy=0.5 7, =0
= 0.6 r , = Comments:
Y052 |
Sl o K * Envelope flutter a strong
£ 04 | - ;
5 | function of occupancy 7
= * Space-charge expands envelope
but does not strongly modify

00 02 04 06 08 10

Axial Coordinate, s/L,, periodic flutter
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Equations

Solenoidal Focusing - piecewise constant focusing lattice

— <L
cos og = cos(20) — 177—77@ sin(20) O = \/é P
',
Ra(s)] | (Ko = Ky) T ]
-
| i--"'l hid——hii—hi 5
/2T ¢ 42 a2 d=(1-n),

i“‘ Lp .-.i g = an
| Lattice Period |

n € (0,1] = Occupancy
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Solenoidal Focusing — parametric plots of breathing and quadrupole envelope
mode phase advances two values of undepressed phase advance

a) 'I]=[]125.GD=EDD b) ’I]=D125.GD=115D'
+: Stable +: Stable +: Lattice Resonance
—: Stable —: Stable —: Stable
K" .-H‘-. tf’ x“x g x“t
— oL _ N __J S
E T E | I|
= 160 ' 2 220 G \Cont. Foc.
&, 140| O Cont Fec. L ' (dashed) |
‘EL, (dashed o verlaid) = 180 | 15€ o | 'x\‘ G_
T 120 N ] T =
= i = | < _Cant. Foc.
= 100 ' G _Cont. Foc. ﬁ 140 rd.;sEI:u:dJ; F
! 20 ' (dashed overlaid) | 4 :
4 : 4 100l :
E': 00 02 04 06 08 1.0 If. 00 02 04 06 08 1.0
G /Oy G /Gy
- S TP ! Band Band
% 1.4 :ND I“Stﬂbl]lt} % 1.4 : ?Ti:t Res.) :{.Jt Res.)
LEI ]. D T-l-.T— 3 LEI ]. ﬂ T-l- T—l /’—fﬂ-.l_-“\\fj F T-I- T_T
s b I B e S
5 0.6 , g 06 s
o 00 02 04 06 08 1.0 o 00 02 04 06 08 1.0
O/ Uﬂ O/ Uﬂ
L)
-

\_/UT_
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Solenoidal Focusing — mode instability bands become wider and stronger for
smaller occupancy

0.75 (Blue) o
n = o) — 115
0.10 (Red)

fc;
= 220¢
O
% L
g 130 Comments:
:,’ ' + Phase advance in instability
5 140t band 180 deg.
i -' + Significant deviations from
§ 10%.-0 02 04 06 08 1'.0 continuous r.nodel.e.ven outside
A the band of instability when

G /0

space-charge strong

— Band + Instability band becomes
% 1.4} 1. Ban Y- Band ' stronger for low occupancy
LCT"U 1.0% @ 2N
< _ —
Z 06
O 00 02 04 06 08 1.0

G /O
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Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation

n = 0.75 n = 0.25
Breathlng and Quadrupole Mode Growth Factors, v, and y_
1.0 |
infr, | 1.0 :
0.8 i 0.8 |
T= 0.0
0.6 Lattice Res. S0
0 6 0.6
g N
© 04 o 04] I
45 Lattice
02| Lattice 0o Res.
Res. Band Band
0.0 ' 0.0 .
100 120 140 160 180 100 120 14[}. 160 180
O (deg/period) O (deg/period)
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Solenoidal Focusing — parametric mode properties of band oscillations

Lattice Resonace Band

T

Lattice Resonace Band

a) 1 =0.75 b)n =0.25
Breathing Mode Phase Advance Oy
105 1.0¢ : ——
] ma
0.8} 8 08|}
| =
0.6 2 0.6
< i
© 04 £ Los
| -
028 0.2
0.0 0.0 L5 : .
30 60 90 120 150 180 0 30 60 9 120 150 180
G (deg/period) O (deg/period)
Quadrupole Mode Phase Advance, 6_
1.0 = B0 i
= N\
5 : \
0.8 2 0.8}}
0.6() & 0.6
& ,ﬁ g
L 04} N|E o4
0.2 0.2
0.0 L2 0.0 8 |
120 150 180 0 30 90 120 150 180
‘50 (deg/perlod) Gy (deg/perlod)
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Quadrupole Doublet Focusing —

FODO and Syncopated Lattices

a) 6,=80°nN=0.6949,and =12 FODO

—_ 10 ' i(Mid Drifts) | (Mid Lenses)
= GIIG.DIU.S P Cri=r.=0

] *- PEY, Cix T Ty

|Qﬂ 0.8 e E

o

00 02 04 06 08 1.0
Axial Coordinate, .?;’Lp

b) op=80%1=0.6949,and & = 0.1 Syncopated

1.0 {(Mid Drifts)
i T

3
S 0.8)

<&
e

- 0687
0.4}

Radii, r

00 02 04 06 08 10
Axial Coordinate, stp

Matched Envelope Solution

Focusing:
ka(s) = —hy(s) = A(s)
K(s + Lp) = A(s)
Matched Beam:

Ex = €y = € = const
ram (S + Lp) = Tom(s)
rym (S + Lp) = Tym(s)

Comments:

+ Envelope flutter a weak function
of occupancy 7]

* Syncopation factors ¢ £ 1 /2
reduce envelope symmetry and
can drive more instabilities

*+ Space-charge expands envelope
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Using a transfer matrix approach on undepressed single-particle orbits set the

strength of the focusing function for specified undepressed particle phase
advance by solving:

See: S.M. Lund, lectures on Transverse Particle Equations

Quadrupole Doublet Focusing - piecewise constant focusing lattice

1 —
cos g = cos O cosh © + —77(9((308 © sinh © — sin © cosh O) -
1 o = || Ly
1 —n)? =
— 2a(1 — a)#@2 sin © sinh © 2
n
'y
i, (s) _ (1, =_K‘y) _____________________ I S )
dy | anfzi dy n € (0,1]  Occupancy
F Quad i |
| -
| l D Quad S
| g———— o]
MLp/2 :
B SR I NN R R _ a €10,1/2] Syncopation
H Lp ... d; = a1 )Lp Factor
i Lattice Period - dy=(l-a)(1")L, a = ]_/2 — FODO
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Quadrupole Focusing — parametric plots of breathing and quadrupole
envelope mode phase advances two values of undepressed phase advance

a) N=0.6949, a=0.1, 65=380° b) n=0.6949, a=0.1, op=115° Syncopated
B: Stable B: Lat. Res. B- Conf. Res. B: Stable
FODO (Q: Stable % Q: Stable 5 Conf. Res. (Q:Stable
@ N - /s /h
_ g NPARNP,
g 1601 o g 240 G+: Cont. Foc. ' : s
O : L . ' (dashed) : 1
o O, Cont. Foc. £ | P
0 140 (dashed) on 200} i y 20
O = 471
o 120 . \ Gy S S i =1~
: = 160F e
- e - -'EJ'
E 100 a i G. Cont. Foc. < ! i O:Q < (:'\ Cont. F oc.
9 80— | (dashed) % 120f __J:_I”,..a-- N (_dashed)i
..E 00 02 04 06 08 10 f 00 02 04 06 08 1.0
G /Gy G/Gg
- T ' Y3YoBand, |
5 14l ‘No Instability] & 14[% Q’BTW |
g | i 3 Y f
otk o ’/:g:\* : RERLR
s 7 ' = > ' '
= = / ve Band :
< 06} | = 0.6 . J'(?:fmf. Res) ' U/Yp LYo
O 00 02 04 06 08 1.0 © 0.0 J 02 04 06 08 1.0
G /0g . C/Cg
| LE
/—r—i;\\
S~ <
l 1/yg
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices

a) o= 1/2 (FODO), c5=115° b) a=0.1, op=115°

FODO [ 0.90 (Blue) Syncopated

n = 0.6?49 (Bl"u.,k)
0.25 (Green)
0.10  (Red)
E E
= 220 5 220
& &
=11] =T
@%180 ﬁ 180
= >
—= 140} - 140}
< <
D] (P]
2 100 L . . | 2100k
= 00 02 04 06 08 10 = 00 02 04 06 08 1.0
2 o 2 /
G /0p G/Og

= r i
S 14} 2
g Lol &
s | =
Z 06} 2
9 00 02 04 06 08 10 © 00 02 04 06 08 1.0

G/0g 0 /0g
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Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine
operation

FODO Lattice Syncopated Lattice
n =0.6949, a=1/2 n =0.6949, o =0.1

Breathing and Quadrupole Mode Growth Factors, yg and Y

1.0 1.0
- InjYg o e 1.0 C Infyg 5 e 10
{]-8 I E 0‘8 I E
Ya Yo 0.0 Yz Yo 0.0
“onfluent Res onfluent Res.
gﬂ'ﬁ », Band | 630‘6 Band
© 04 © 04 &
Lattice
0.2 0.2 Res.
Band !
0.0 . 0.0 l
100 120 140_ 160 180 100 120 140 160 180
G (deg/period) O (deg/period)
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Quadrupole Focusing — parametric mode properties of band oscillations

a) n=0.6949, o.= 1/2 FODO b) 1 = 0.6949, ot = 0.1 Syncopated
Breathmg Mode Phase Advance Og

1.0rg gl =2 1.0 “ils=

NN \& : | N

1 : /A . /M

0.8 W 08| |y

\ : & | 2
':*":._ = ==
0.6 § 0.6 |28
S (oo NN & © g
o] , iﬁ_‘ s = 9
© 04 = 0.4 [ 8
= = 32
= E 0
02 g 02 |S™
: S ; v
1 ""_'_E
0.0 | 1= 0.0! | | A

0 30 60 90 120 150 180 0 30 60 90 120 150 180
G (deg/period) O (deg/period)
Quad:rupole Mode Phase Advance GQ

1.07 —— - 1.0 -

s ] '. M

0811 2 08} "
g A
0.6 7 0.6 | 2 @
|l ,é © £a
> B 2w = 8
O 04! o 0.4 I3 8
: = < 9
., = S o
02 M S 0.2 Bt
, G
' pt
(1T1] L et SR SULS A1 L S 0.0 L=E ibar | _—— 5

0 30 60 90 120 150 180 0 30 60 90 120 150 180

Gg (deg/period) 0 (deg/period)
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Quadrupole Focusing — mode structure varies strongly with mode phase

and the location 1n the lattice (FODO example)

Quadrupﬁle Mode, Mid—- Quadmpﬁle
0.10

Breathing Mode, Mid— Quadrupole
& 0.10

@ 0.051

/l

o
o
=

I
—

Angles, 51}-’/' 0 Radii, Sr

05 0
Yp/m
0Ty 7 0Ty

generally not exact
breathing symmetry

0.5 1

0, 05 1
1|1Q ITT

generally not exact
quadrupole symmetry
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Breathing Mode, Mid—-Drift

=
p—
=

10

Radii, 8r;/[./2Q L,]
o O
E &

Ql
g
el
%
mﬁ
~
=11
=
-1 -0.5 0 0.5
Yp/n
0Tz 7 0Ty

generally not exact
breathing symmetry

Quadrupole Mode, Mid—-Drift

0Ty 7 —0Ty

generally not exact
quadrupole symmetry
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Summary: Envelope band instabilities and growth rates for periodic
solenoidal and quadrupole doublet focusing lattices

Envelope Mode Instability Growth Rates

Solenoid (7 = 0.25) Quadrupole FODO (1 =0.70)
1.07 r 1.0 | ]
I ln"yi ‘ 0.5 | ln"yB’ Q‘ 1.0
0.8| : 0.8 : E -
?: . 0.0 'YB,YQﬂ 0.0
D06 attice 0.6 ( ontluent Res|
: Band
\b y Res. Band Q
© o4] ' 0.4
Lattice
02! Res. 0.2
0.0t : | 0.0 | 1 | . :
100 120 140 160 180 100 120 140 160 180
Gy (deg/period) G (deg/period)

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]
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S9: Transport Limit Scaling Based on Envelope Models

See Handwritten Notes from 2008 USPAS
* Will attempt to convert to slides in future versions of the class
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S8: Centroid and Envelope Descriptions
via 1* Order Coupled Moment Equations

When constructing centroid and moment models, it can be efficient to simply
write moments, differentiate them, and then apply the equation of motion.
Generally, this results in lower order moments coupling to higher order ones and

an infinite chain of equations. But the hierarchy can be truncated by:
+ Assuming a fixed functional form of the distribution in terms of moments
+ Neglecting coupling to higher order terms

Resulting first order moment equations can be expressed in terms of a closed set
of moments and advanced in s or t using simple (ODE based) numerical codes.
This approach can prove simpler to include effects where invariants are not easily
extracted to reduce the form of the equations (as when solving the KV envelope
equations in the usual form).

Examples of effects that might be more readily analyzed:
+ Skew coupling in quadrupoles
+ Chromatic effects in final focus

*+ Dispersion in bends See: references at end of notes
J.J. Barnard, lecture on Heavy-Ion

Fusion and Final Focusing
SM Lund, NE 290H, Spring 2009 Transverse Centroid and Envelope Descriptions of Beam Evolution 79




Resulting form of coupled moment equations:

d
—M =F(M
- (M)

M = vector of moments, generally infinite
F = vector function of M, generally nonlinear

+ System advanced from a specified initial condition (initial value of M)

Transverse moment definition:

. f dQZUJ_ f de’J_ .. fJ_ Car.l be generalized if other
<' e >J_ — variables such as off momentum

f d?z | f dQ'r,J_ Ji are included in f

Differentiate moments and apply equations of motion:

i<> deCCJ_deZUJ_ [ds }fJ—
ds = [ d?xy [ d?2) fi1

- : . . d
+ apply equations of motion to simplify s
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When simplifying the results, if the distribution form is frozen in terms of

moments (Example: assume uniform density elliptical beam) then we use
constructs like:

n:/d%l fi =n(M)

to simplify the resulting equations and express the RHS 1n terms of elements of M

1* order moments:

X1 =(x1)1 Centroid coordinate
=&)L Centroid angle

+ possible others if more variables. Example

OPs
A = ; ) = (0) Centroid off-momentum
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2" order moments:

It 1s typically convenient to subtract centroid from higher-order moments

r=x—X =2 - X'

j=y-—-Y y=y -Y

b=6—A

X-moments y-moments X-y Cross moments dispersive moments
(@) (G (@) (20), (50)
@z') (wy')r @'y, @y)r (@'9), (¥'0)
(@2 @) (@) (6%)

3" order moments: Analogous to 2™ order case, but more for each order

<573>J—7 (572§>J_,
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Many quantities of physical interest are expressed in transport can then be
expressed in terms of moments calculated when the equations are numerically
advanced in s and their evolutions plotted to understand behavior

* Many quantities of physical interest are expressible in terms of
1st and 2nd order moments

Example moments often projected:

Statistical beam size: Statistical emittances:
(rms edge measure) (rms edge measure)
- . o 1/2
re = 2(3%)1/? co =4 [(#) L (@)L — (@3]
~9\1/2 -~ N o 1/2
ry = 207" ey =4[ L — @]

Kinetic longitudinal temperature:
(rms measure)

T, = const x (62)
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[llustrate approach with the familiar KV model

Truncation assumption: unbunched uniform density elliptical beam 1n free space
¥ §=0,6 DO axial velocity spread g A

+ All t ), =
CrOSS moments zero, i.e. (@5), =0 y A A
d d v .
- ()1 = (2’ o (@)L =2wa’)y ¥ B : e 3
d d
ds <.ZU/> <£C”> E(xQ)J— o 2(513,33,/)
X

Use particle equations of motion within beam, neglect images, and simplify
* Apply equations in S2 with E’l —0

/" (’Ybﬁb) B QQ o B

B S T G @ (0 =0
(’Ybﬂ ) 20 -

T by ! vty = (o + 7)1 (y—(y)1)=0
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Resulting system of 1st and 2nd order moments

1* order moments:

(T) L
d | (@)
ds | (y)L
WL

2" order moments:

2(9y') |

—2Ky(8) (

i Q(#"?) |
hin () (F2) | + [4z2) 2 ((22) ) 2 +(52) 1)
Y+ 2Q(#3') |
L0 @) (@) P32 ?)]
. ~2 Q7”) |
<y >J_ I{y(s) <y >J_ + [4<g2<>i/2>((5;2>i/2+<§'2>i/2)]
. 2Q(939') |
gy L+ [4(g2) 2 ((#2) 24 (52) ) ?)]

+ Express 1st and 2nd order moments separately in this case since uncoupled
+ Form truncates due to frozen distribution form: all moments on LHS on RHS
+ Integrate from initial moments values of s and project out desired quantities
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Using 2" order moment equations we can show that

d 2 A d o
E%_O_dsgy

e2 =16 [(z*) 1 (z"*) 1 — (zz’)] | = const

2
ex =16 [(y?) L(¥")L — (yy')1] = const

Using this, the 2" order moment equations can be equivalently expressed in the
standard KV envelope form:

drs d 2 ;
L:T;; L0 4oy — Q _ %z _
ds ds ry +1y, TS
dry _ . d 2Q_ =
—= =T, ; — KyTy — ——= =0

+ Moment form fully consistent with usual KV model .... as it must be

+ Moment form generally easier to put in additional effects that would violate
the usual emittance invariants
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Relative advantages of the use of coupled matrix form versus reduced equations

can depend on the problem/situation

Coupled Matrix Equations

d
—M=F
ds

M = Moment Vector

F = Force Vector

+ Easy to formulate
- Straightforward to incorporate
additional effects
+ Natural fit to numerical routine
- Easy to code

Reduced Equations

X"+ Kk, X=0
9 2
Q2 .

144
’)“m—|—lig;’)“$— — — =

re 4Ty TS
etc.

Reduction based on identifying
invariants such as

2 ~9 ~/ 2 ~ ~/
5$:16[<:1: ), (@ >.L—<xx>J
helps understand solutions

+ Compact expressions
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”

“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund
Lawrence Berkeley National Laboratory

BLDG 47 R 0112
1 Cyclotron Road
Berkeley, CA 94720-8201

SMLund @1bl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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References: For more information see:

Image charge couplings:
E.P. Lee, E. Close, and L. Smith, Nuc. Inst. And Methods, 1126 (1987)
Seminal work on envelope modes:

J. Struckmeier and M. Reiser, Theoretical Studies of Envelope Oscillations and
Instabilities of Mismatched Intense Charged-Particle Beams in Periodic Focusing
Channels, Part. Accel. 14, 227 (1984)

M. Reiser, Theory and Design of Charged Particle Beams (John Wiley, 1994, 2008)

Extensive review on envelope instabilities:

S.M. Lund and B. Bukh, Stability Properties of the KV Envelope Equations
Describing Intense lon Beam Transport, PRSTAB 7 024801 (2004)

Efficient, Fail-Safe Generation of Matched Envelope Solutions:

S.M. Lund and S.H. Chilton, and E.P. Lee, Efficient Computation of Matched
Solutions of the KV Envelope Equations, PRSTAB 9 064201 (2006)
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KV results:

F. Sacherer, Transverse Space-Charge Effects in Circular Accelerators, Univ. of
California Berkeley, Ph.D Thesis (1968)

I. Kaphinskij and V. Vladimirskij, in Proc. Of the Int. Conf. On High Energy Accel.
and Instrumentation (CERN Scientific Info. Service, Geneva, 1959) p. 274

Symmetries and phase-amplitude methods:

A. Dragt, Lectures on Nonlinear Orbit Dynamics in Physics of High Energy Particle
Accelerators, (American Institute of Physics, 1982), AIP Conf. Proc. No. 87, p. 147

E. D. Courant and H. S. Snyder, Theory of the Alternating-Gradient Synchrotron,
Annals of Physics 3, 1 (1958)

Analytical analysis of matched envelope solutions and transport scaling:

E. P. Lee, Precision matched solution of the coupled beam envelope equations for a
periodic quadrupole lattice with space-charge, Phys. Plasmas 9, 4301 (2005)

O.A. Anderson, Accurate Iterative Analytic Solution of the KV Envelope Equations
for a Matched Beam, PRSTAB, 10 034202 (2006)
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Coupled Moment Formulations of Centroid and Envelope Evolution:

J.J. Barnard, H.D. Shay, S.S. Yu, A. Friedman, and D.P. Grote, Emittance Growth in
Heavy-Ion Recirculators, 1992 PAC Proceedings, Ontario, Canada, p. 229

J.J. Barnard, J. Miller, 1. Haber, Emittance Growth in Displaced Space Charge
Dominated Beams with Energy Spread, 1993 PAC Proceedings, Washington, p. 3612
(1993)

J.J. Barnard, Emittance Growth from Rotated Quadrupoles in Heavy Ion Accelerators,
1995 PAC Proceedings, Dallas, p. 3241 (1995)

R.A. Kishek, J.J. Barnard, and D.P. Grote, Effects of Quadrupole Rotations on the
Transport of Space-Charge-Dominated Beams: Theory and Simulations Comparing
Linacs with Circular Machines, 1999 PAC Proceedings, New York, TUP119, p. 1761
(1999)

J.J. Barnard, R.O. Bangerter, E. Henestroza, I.D. Kaganovich, E.P. Lee, B.G. Logan,
W.R. Meier, D. Rose, P. Santhanam, W.M. Sharp, D.R. Welch, and S.S. Yu, A Final
Focus Model for Heavy lon Fusion System Codes, NIMA 544 243-254 (2005).

J.J. Barnard and B. Losic, Envelope Modes of Beams with Angular Momentum, Proc.
20th LINAC Conf., Monterey, MOE12 (2000)
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